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Harmonic oscillator with periodic non-zero mass 
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Krijgslaan, 281, B-9000 Gent, Belgium 
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Abstract. We present two cases of a quantum harmonic oscillator with a time-dependent 
non-zero mass. These are considered to be more realistic than the previously studied 
variable masses. In particular, periodic solutions for the kinetic and potential energies are 
investigated by means of stability charts. The general periodic mass is discussed briefly. 

1. Introduction 

The study of the harmonic oscillator with a time-dependent mass arises in the descrip- 
tion of the electric and magnetic field intensities in a Fabry-Phot cavity, as discussed 
by Colegrave and Abdalla (198 1 a). Using time-dependent canonical transformation 
theory, these authors reduced the variable-mass Hamiltonian 

H ( t )  = I p ' / M ( t ) + f M ( t ) w ' q '  [q ,  PI = ih  (1.1) 

to the standard constant-mass form. Two exactly solvable models were presented, 
namely an exponentially decaying mass (Colegrave and Abdalla 1981b) and an oscillat- 
ing mass (Colegrave and Abdalla 1982). 

A different approach, leading more directly to the solution of the corresponding 
Schrodinger equation: 

{ - [ h ' / 2 ~ (  t ) ]  a 2 / a q 2 + f k f (  t)w'q'}+ = ih a+ /a t  (1.2) 

was proposed by Leach (1983). Leach first used a change of timescale for the Hamil- 
tonian system described by ( l . l ) ,  putting 

(4, p ,  t )  + ( q ' ,  p r ,  t ' :  q' = q, p '  = p ,  t' = M - ' ( s )  ds  . I' 1 (1.3) 

The presence of zeros in M (  t )  amounts to a dilatation of the timescale in (q ' ,  p ' ,  t ' )  
space. Next a point transformation in the space variables was performed, which yields 
the Hamiltonian of the time-independent harmonic oscillator. This generalised trans- 
formation is 

( q ' , p ' ,  t ' ) + ( Q , P ,  T: Q = q ' / p , P = p p ' - p q ' ,  T = j " p - ' ( s ) d s )  (1.4) 

where p(t') is a solution of the auxiliary equation: 

p +  N~~~~ = 1lP3 (1.5) 
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and 

N[t’(  1 ) ]  = M (  t ) .  

The physically relevant quantities are the expectation values for the potential and  
kinetic energies of the time-dependent system: 

( n / V / n ) = f M u 2 v 2 h ( n + f )  (1.7a) 

( n  1 TI n )  = fM-’( v-* + M ’ ~ ’ ) h (  n + $) (1.7b) 

where 

4 t )  = P[t’( t ) l .  (1.8) 

v ( t )  = ( A c t +  B l : + 2 C l , [ 2 ) 1 ’ 2  (1.9) 

As shown by Leach (1983) this can be written as 

where c1 and c2 are two linearly independent solutions of the second-order differential 
equation 

[+ ( U 2 -  i j / v ) l  = 0 

M (  t )  = $( t ) .  

AB - C2 = T- *  W 

(1.10) 

(1.11) 
with 

The parameters A, B and C depend on the initial conditions and are related by 

(1.12) 

where W is the Wronskian of equation (1.10). 
The cases studied by Colegrave and Abdalla (1981b, 1982) are particularly simple 

because i j  is a constant multiple of 77 and consequently equation (1.10) is trivial to 
solve. Several more examples of exactly solvable models were presented by Leach 
(1983), using functions v( t )  for which equation (1.10) has analytical solutions. 
However, all these examples have the disadvantage that v( t ) ,  which is the square root 
of the time-dependent mass, becomes zero at a certain finite time. Although this is a 
case which could arise in an ideal Fabry-PCrot cavity, one would like to study masses 
which d o  not become zero. In particular, solutions for a periodically varying non-zero 
mass would be very interesting, not only in optics, but Colegrave and  Abdalla (1982) 
suggest applications in other branches of physics as well. 

In this paper we will show in § 2 how the choice of a zeroth-order cosine type 
Mathieu function for v ( f )  allows us to study the present problem in terms of the 
known properties of the Mathieu equation. Furthermore, in § 3, we will investigate 
the case 

v ( t )  = a +  b cos at a > l t l > O  (1.13) 

proposed by Leach (1983). We then have to determine the stability of the solutions 
of a certain Hill equation. In D 4 we compare these two cases and  present our 
conclusions. 

2. Time-dependent mass using the Mathieu equation 

It was stated by Colegrave and Abdalla (1982) that the study of a non-zero periodic 
mass leads to an awkward analysis and that there is no hope of an exact solution. In 
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this section we will prove that this is not the case and  that an  analytically tractable 
model is possible indeed. 

To this end we suppose that v( t ) ,  i.e. the square root of the time-dependent mass, 
obeys the equation 

i j / v = A + B c o s a t  (2.1) 

i j - ( A + B c o s a t ) v = O .  (2.2) 

( 4  v ) + ( z , y :  z = f a t , y ( z ) = v ( t ) )  (2.3) 

or  

After a change of variables, 

this is a Mathieu equation, which has the canonical form 

d2y/dz2+ ( a  -2q cos 2 z ) y  = 0 (2.4) 

(throughout this paper we use the conventions of McLachlan (1964)) and the values 
of the parameters are a = -4A/a2,  q = 2 B / a 2 .  

It is well known that the only periodic solutions (with period 7~ or  27r) of Mathieu’s 
equation (2.4) are the Mathieu functions ce,(z, q )  and se,(z, 9). Furthermore, ce, 
has m zeros in 30, T [  and se,,, has m - 1 zeros in 30, T [  and is zero in 0 and T. 

Consequently, in order that r ] (  t )  corresponds to a periodically varying non-zero mass 
we must choose 

v ( t )  = ceotfat, q )  (2.5) 

which is a solution of 

i j + ~ a 2 ( a o - 2 q c o s   at)=^ (2.6) 

where q is a parameter and  a, is the characteristic number for ce,, which is uniquely 
determined by q and can be expanded as 

a,= -&’+L 128q4-&q6+o(q8).  (2.7) 

This means that (4, a )  is a point somewhere on the lower curve in the stability chart 
(figure 1). 

In other words, we can arbitrarily choose B in equation (2.1), but then A is fixed: 

A = -a2a0/4 ( 2 . 8 ~ )  

where a, is the characteristic number corresponding to 

q = 2 B / a 2 .  (2.8b) 

We are therefore led to investigate a one-parameter class of oscillating non-zero masses 

~ ( t )  = [ceo(icut, q)]’. (2.9) 
For sufficiently small values of q we have 

M ( t )  = [ I  - f q  COS a t + ~ ( q ’ ) ] ’  (2.10) 

and for larger q values one can use further terms in this expansion (McLachlan 1964). 
A plot of the mass variation (2.9) is shown in figure 2. Furthermore, in the limit 
141 + +a one can prove, using the asymptotic behaviour and the normalisation of the 
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a 

I , 

Figure 1. Stability chart for the Mathieu equation. The hatched portions correspond to 
regions of instability. In the second region of stability the iso-p curves for two values of 
p are indicated. 

+ af  

Figure 2. The mass variation [ce& q ) ] ’  in the interval [0, a] for three different q values: 
A, q = 1 ; B, q = 2;  C, q = 8. The function [ce,($at, q)] ’  is periodic with period n. 
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Mathieu functions, that 

(2.11) 

although this could hardly be considered a very realistic case. 
Substitution of $/s, obtained from (2.6), in (1.10) gives the Mathieu equation 

~ + ( w 2 + $ a 2 a o - ; a 2 q  cos C Y t ) [ = O  (2.12) 

or after a change of variables 

we obtain 

d2y/dZ2 + (4w2/  CY’ + a0 - 2q COS 2z)y = 0. (2.14) 

We have to determine two linearly independent solutions y,(z, q )  and y2(z, q )  in order 
to solve the problem. Conventionally one takes 

y,(O) = Y Z O )  = 1 

y2(0)  == Y ; ( o )  = 0 

yl(z>y;(z) -Y,(Z)y;(z) = 1. 

and then the Wronskian is 

A general investigation of the solutions of equatic (2.14) would be beyo 

( 2 . 1 5 ~ )  

(2.15b) 

(2.16) 

d the bounds 
of this paper and we will therefore restrict ourselves to periodic solutions. 

From a physical point of view the most interesting situations are those for which 
the expectation values (1.7) are periodic functions of time. Obviously this will be the 
case when v ( t )  defined in (1.9) is periodic. Because of the relation (1.12) with the 
Wronskian the case where only one parameter A or B is not zero can never occur. 
Therefore both linearly independent functions 5, and l2 will always contribute to v( t ) ,  
whatever the initial conditions are. Consequently v ( t )  can only be periodic when 5, 
and 1, are periodic functions with the same period. 

From the study of the stability of the solutions of Mathieu’s equation one knows 
that the following cases are possible: 

(i)  y ,  (or y 2 )  has period T or 2rr, then y ,  (or y , )  is not periodic; 
(ii) y ,  and y ,  are both not periodic, and one is unbounded when z + +CO; 

(iii) y ,  and y 2  have the same period ST, s = 3,4, .  . . ; 
(iv) y ,  and y ,  are non-periodic but bounded when lz( + +CO. 

The first case occurs when, for the given q, the value a = a ,+4w2/a2  is equal to a 
characteristic number a, or b,. The second one corresponds to a (4, a )  value in a 
region of instability and the last two to a value in a region of stability. In the stability 
chart (figure 1) one can view this as a ‘direct transition’ (i.e. with the same q value) 
from a point (9, a,) to a point (4, a ) .  The hatched region and the boundaries correspond 
to non-periodic solutions. In the regions of stability the solutions are characterised 
by the parameter @(&IO, l[), the general solution being 

+I +5 

y ( z ) = A  c~~ exp[(2r+@)zi l+B c~~ exp[-(2r+@)zi]. (2.17) 

When P is a rational fraction p /  s ( p  and s relatively prime) the general solution has 

r = - x  ,=--io 
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period srr. When p is irrational the solution is oscillatory, but bounded and non- 
periodic. 

We conclude that under certain conditions the matrix elements (1.7) are periodic 
functions of time, with a period which is a multiple (2srr/a;  s = 3,4, .  . .) of the period 
of the mass (2.9). 

3. Time-dependent mass using a Hill equation 

Another periodically varying non-zero mass has been proposed by Leach (1983), writing 

T ( t )  = a +  b COS at a>Ibl>O. (3.1) 

Equation (1.10) is then 

f + [ w 2 +  a* - ucy2(u + b COS at)-’]l= 0 (3.2) 

( t ,  O + ( z , y :  z=t . f ,y (z)=l ( t ) )  (3.3) 

d 2 y / d z 2 + 4 [ P 2 - ( 1 + ~  COS 2~) - ’ ]y=O (3.4) 

which after the change of variables 

transforms to 

where p 2  = ( w 2 +  a’)/.’ and lul= Ib/a/  < 1 (note that p2 here should not be confused 
with the p of the previous section, which is a conventional label for the fractional 
order solutions of Mathieu’s equation). 

This is of the form of Hill’s equation (Magnus and Winkler 1979), which in general 
reads: 

d2y/dz2 +[A + Q( z)]y = 0 (3%) 

Q ( z +  T )  = Q(z). (3.5b) 

Equation (3.4) was obtained by Leach (1983), but it was not analysed further. 
Nevertheless, the stability chart of the Hill equation (3.4) can easily be obtained 

by numerical methods described elsewhere (Wille and Phariseau 1985) and is shown 
in figure 3. In brief, the stability is determined by an infinite or Hill determinant. 
Since the Fourier coefficients of the periodic function occurring in (3.4) are propor- 
tional, this determinant can be evaluated by means of a recurrence formula. The value 
of the determinant allows one to decide whether the (m,  p ’ )  point is situated in a region 
of stability or instability, or on a borderline (corresponding to a periodic solution, 
with period T or 2 ~ ) .  

Again we will focus on periodic solutions of equation (3.5). We start by noting 
that for P 2  = 1 equation (3.4) always possesses a periodic solution: 

l + u c o s 2 z  
l + u  Y l ( Z )  = 

and the second solution y2(z) is not periodic. When m = 1 equation (3.4) becomes 

cos2 z (3.7) 

which has the general solution (Kamke 1967, C2.420; see also Scarf 1958). 
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r o . 0 ~  //, 

P 2  
5 

U 

Figure 3. Stability chart for the Hill equation (3.4). The hatched portions are regions of 
instability. 

These solutions are always unstable, except when 

p 2 =  ( n  + 1)2/4 n = 1,2,. . . (3.9) 

and then two periodic solutions exist simultaneously. In general the zeroth region of 
instability is the interval ]-CO, 1[ for all values of cr; the nth region of instability starts 
at ( n / 2  + 1)2 ( n  = 1,2, .  . .) when cr = 0 and extends from ( n  + 1)2/4 to ( n  +2)2/4 when 
U = 1. Using the same conventions (2.15) as before, the Wronskian of the Hill equation 
(3.5) is equal to 1. Equation (3.4) is of the form of Ince's equation (Magnus and 
Winkler 1979) which in general can possess two solutions of period T (or 277) 
simultaneously (coexistence). However for the present equation this is not the case 
(except for U = 1) and so exactly the same considerations as in § 2 can be made 
concerning the periodicity of the solutions y, and y,. In particular, for appropriate 
values of cr and w 2  the matrix elements (1.7) can have a period which is a multiple 
of that of the mass (3.1). 

We conclude by noting that the most general periodic mass variation will have the 
property 

; i /V  = - Q ( t )  (3.10a) 

Q ( t +  T )  = Q ( t )  (3.10b) 

in appropriate time units. In other words, V(  t )  is a solution of a Hill equation belonging 
to the eigenvalue A = O .  Substitution in (1.10) gives 

[ + [ U 2  + Q( t)-jl= 0 (3.11) 
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and so l ( t )  is a solution of the same Hill equation, but belonging to the eigenvalue 
A = w’.  Consequently the picture of direct transitions in a stability chart is generally 
valid. 

Conversely, any periodic solution of a Hill equation will give a possible mass 
variation (which, in general however, will have zeros). When the periodic solutions 
coexist (Magnus and Winkler 1979) the matrix elements (1 .7)  can oscillate in phase 
with the mass. 

4. Conclusions 

We have studied the quantum harmonic oscillator with a periodically varying mass. 
The expectation values of the physical observables are determined by a second-order 
differential equation which, for a periodically varying mass, is a Hill equation. In 
particular, we present two expressions for periodic masses which are always strictly 
positive. This is an improvement over the work of other authors (Colegrave and 
Abdalla 1982) where the mass returned periodically to zero. 

In the first case considered the mass is the square of a zeroth-order cosine type 
Mathieu function. Although this is a rather artificial time dependence it has the 
advantage of allowing a completely analytical treatment, and as such it has the character 
of a model calculation. Moreover, for sufficiently small values of the parameter q, the 
mass can be expanded in a Fourier series and has a simple time dependence. 

The second mass variation, proposed by Leach (1983), is physically more acceptable 
but the corresponding Hill equation must be solved numerically. In both cases we 
focus on periodic solutions and it is found that the expectation values can show 
resonant behaviour with a period which is a multiple of that of the mass. 

As the main field of application of the models investigated here, we mention 
laser-producing or laser-driven cavities. A Fabry-PCrot cavity in contact with a reservoir 
of two-level atoms can be described by a Hamiltonian constructed in terms of mass 
parameters Mf”( t )  in the various modes (Sargent et al1974). In the case of single-mode 
operation at frequency w this Hamiltonian assumes the familiar harmonic oscillator 
form (1.1) and the electric and magnetic fields are proportional to M1”(t) (Colegrave 
and Abdalla 1981a). Evidently these field intensities are also governed by the expected 
number of photons in the mode considered. Pulsating fields, as they have been studied 
here, would have to be maintained by a pumping mechanism. Kumar and Mehta 
(1981) have performed calculations for pump-signal-idler systems and they obtained 
results in terms of Jacobian elliptic functions, which could be approximated by a mass 
law of the type (3 .1 ) .  Since this mass law has to be treated numerically, one would 
like to find an analytically solvable model in order to get some insight into the properties 
cE non-zero oscillating field intensities. As shown here, zeroth-order cosine type 
Mathieu functions provide such a model. 

Finally, we would like to point out that the stability chart for the Hill equation 
(3.4) is an interesting result in its own right, which might have applications in several 
branches of physics. As one example we mention direct capacitance modulation in 
circuits involving a resistance (McLachlan 1964, 15 .  30). The case of zero resistance 
has been discussed in the literature (Infeld 1977), but the general case has only been 
studied approximatively by reducing the problem to a Mathieu equation. It is not 
implausible that other problems of parametric resonance can be described by equations 
similar to (3.4). 
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